Detection of Nuclear Sources by UAV Teleoperation Using a Visuo-Haptic Augmented Reality Interface

نویسندگان

  • Jacopo Aleotti
  • Giorgio Micconi
  • Stefano Caselli
  • Giacomo Benassi
  • Nicola Zambelli
  • Manuele Bettelli
  • Andrea Zappettini
چکیده

A visuo-haptic augmented reality (VHAR) interface is presented enabling an operator to teleoperate an unmanned aerial vehicle (UAV) equipped with a custom CdZnTe-based spectroscopic gamma-ray detector in outdoor environments. The task is to localize nuclear radiation sources, whose location is unknown to the user, without the close exposure of the operator. The developed detector also enables identification of the localized nuclear sources. The aim of the VHAR interface is to increase the situation awareness of the operator. The user teleoperates the UAV using a 3DOF haptic device that provides an attractive force feedback around the location of the most intense detected radiation source. Moreover, a fixed camera on the ground observes the environment where the UAV is flying. A 3D augmented reality scene is displayed on a computer screen accessible to the operator. Multiple types of graphical overlays are shown, including sensor data acquired by the nuclear radiation detector, a virtual cursor that tracks the UAV and geographical information, such as buildings. Experiments performed in a real environment are reported using an intense nuclear source.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring visuo-haptic augmented reality for training

Computer based training has been intensively studied in the last decades and its application in different domains became highly popular. Current systems, however, only provide a fully simulated environment in which the training takes place. Their application is therefore limited by the complexity of the simulated scene or by the capability of the underlying hardware. A concept which can be used...

متن کامل

Visuo-Haptic Augmented Reality runtime environment for medical training

During the last decade, Visuo-Haptic Augmented Reality (VHAR) systems have emerged that enable users to see and touch digital information that is embedded in the real world. They pose unique problems to developers, including the need for precise augmentations, accurate colocation of haptic devices, and efficient concurrent processing of multiple, realtime sensor inputs to achieve low latency. W...

متن کامل

[DEMO] Comprehensive Workspace Calibration for Visuo-Haptic Augmented Reality

Visuo-haptic augmented reality systems enable users to see and touch digital information that is embedded in the real world. Precise colocation of computer graphics and the haptic stylus is necessary to provide a realistic user experience. PHANToM haptic devices are often used in such systems to provide haptic feedback. They consist of two interlinked joints, whose angles define the position of...

متن کامل

Bilateral Haptic Teleoperation of an Industrial Multirotor UAV

This chapter presents an intuitive laser-based teleoperation scheme to enable the safe operation of a multirotor UAV by an untrained user in a cluttered environment using a haptic joystick. An obstacle avoidance strategy is designed and implemented to autonomously modify the position setpoint of the UAV if necessary. This scheme includes a novel force-feedback algorithm to enable the user to fe...

متن کامل

Haptic Interface for UAV Teleoperation

The feedback upon which operators in teleoperation tasks base their control actions, differs substantially from the feedback to the driver of a vehicle. On the one hand, there is often a lack of sensory information; on the other hand, there is additional status information presented via the visual channel. Haptic feedback could be used to unload the visual channel and to compensate for the lack...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017